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Classification of 10d type I1A/B supergravity solutions with dS,, Mink,, AdS,
(candidates for classical string backgrounds)

— identify general properties?
— new, previously unexplored classes of solutions exhibiting new physics?




(Common) ansatz for solutions:
- 6d group manifold

- constant flux components

- smeared Dp/Op sources

— consistent truncation to a 4d gauged supergravity
— solutions still with a variety of properties: (non)-susy, (un)stable, (non)-scale separated (see examples)

+ always include O, (key)
+ solutions have a possibly non-vanishing tadpole (e.g. O, with D, or D not included)
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- constant flux components

- smeared Dp/Op sources

— consistent truncation to a 4d gauged supergravity
— solutions still with a variety of properties: (non)-susy, (un)stable, (non)-scale separated (see examples)

+ always include O, (key)
+ solutions have a possibly non-vanishing tadpole (e.g. O, with D, or D not included)

— classification
— look for new solutions in unexplored classes, with MaxSymSolSearch.nb (MSSS)

— study properties of solutions: existence (dS), stability (Mink), scale separation (AdS)...
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* Apply O, projection: get list of compatible fields

Example: fi: Fis5, I,

F3 315, F3316, F3305, F3306, L3415, F3za16, L3425, L3406,

F5 34125, F5 34126,
Hios, Hize, Hzss, Hsss,

4 4 4 4
f3157 f3163 f3257 f3267 f 15 f 16 f257 f267 f1537 f1637 f1547 f164a

f2537 f263: f254p f2647 f513: f523: f5147 f5247 f613a f623u f6147 f624
* Determine non-zero components of sourced Bianchi identities — read allowed D,/O,
Example: dfs —HAF, =}, TTfO voly ; D. along 12, 34, 56
~ [ beF3dela + HipedF1 e T (D, along 2456, 2356, 1456, 1356)
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All de Sitter solutions only found with at least 3 (intersecting) sets of D /O,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56




All de Sitter solutions only found with at least 3 (intersecting) sets of D /O,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56

Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel D /O,).
D. Andriot [arXiv:1902.10093]




All de Sitter solutions only found with at least 3 (intersecting) sets of D /O,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56

Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel D /O,).
D. Andriot [arXiv:1902.10093]

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of D /O,.

+ T-duality argument: classes with 2 sets = T-dual” to a class with a no-go




All de Sitter solutions only found with at least 3 (intersecting) sets of D /O,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56

Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel D /O,).
D. Andriot [arXiv:1902.10093]

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of D /O,.

+ T-duality argument: classes with 2 sets = T-dual” to a class with a no-go
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Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel D,/O,).
D. Andriot [arXiv:1902.10093]

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of D /O,.

+ T-duality argument: classes with 2 sets = T-dual” to a class with a no-go

Implication: A 4d effective theory of a classical string compactification,
with a de Sitter critical point, is at most A/ =1 supersymmetric.

in agreement with gauged supergravities de Sitter solutions
(see also N. Cribiori et al [arXiv:2011.06597], G. Dall'Agata et al [arXiv:2108.04254])

Great news for phenomenology! N < 1 better for particle physics (chirality).
Here a common stringy framework for (viable) cosmology and particle physics naturally appears.
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Determination of g;;, V' + spectrum fully automatized in MaxSymSolSpec.nb (MSSSp)
(technicalities: kinetic terms + redundancy among the or)




We study the stability of the solutions with a 4d effective action:
S = [d*z+/|gal (%734 — 39i0u PO ¢’ — V)
Restricted set of fields (but enough for our pur@p, TR0t
!

\

6d volume  4d dilaton ~ volume of cycle wrapped by set |

Determination of g;;, V' + spectrum fully automatized in MaxSymSolSpec.nb (MSSSp)
(technicalities: kinetic terms + redundancy among the or)

Results: - Mink.: most interesting!

- dS: always tachyonic, as in proposal U. H. Danielsson et al [arXiv:1212.5178]
ny ~ —1 as in refined dS conjecture, with few (interesting) exceptions

Requires more dedicated solution searches D. Andriot [arXiv:2101.06251]

- AdS: few (non-susy?) solutions are " perturbatively stable” —— to be investigated
H. Ooguri et al [arXiv:1610.01533]
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10d supergravity solutions compactified to 4d Minkowski always admit
a massless 4d scalar, among the fields (p, 7, o1)
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Proof of systematic flat direction in 1A Dg/Og N =1 Mink solutions
A. Micu et al [hep-th/0701173], M. Ihl et al [arXiv:0705.3410]

Here: Massless Minkowski Conjecture:
10d supergravity solutions compactified to 4d Minkowski always admit

a massless 4d scalar, among the fields (p, 7, o1)
2 important (new) points in claim:
- independent of N susy of theory or solution

- specification of field sector — useful for proof

—— relation to dS tachyon?
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10d supergravity solutions compactified to 4d Minkowski always admit
a massless 4d scalar, among the fields (p, 7, o1)

4d version, with potential V' from 10d supergravity compactification:

If there exists a Mink critical point, M, VV =V = 0, then the mass
matrix VoV admits a vanishing eigenvalue.

Strong version:
Such a critical point admits no tachyon:

0 = min VOV = |XZ| :A/Zz

The inequalities of all refined de Sitter conjectures are saturated!

In a quantum gravity effective theory, any correction beyond (10d)
supergravity could alter massless property...
Still interesting for phenomenology!
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- Ricci flat and nilmanifolds: gap between curvature R and eigenmode

Laplacian Ag D. Andriot et al [arXiv:1806.05156],
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— circumvent constraints on scale separation
F. Gautason et al [arXiv:1512.00457]




Scale separation in AdS solutions: only with compact manifold being Ricci flat or a nilmanifold?

—— the case for solutions in Sggge and mxs77
(see also N. Cribiori et al [arXiv:2107.00019])

Arguments in favor of this: - group manifolds, not nilmanifold, can have curvature scales > KK scale

—— No scale separation with such solution
D. Andriot [arXiv:1806.10999]

- Ricci flat and nilmanifolds: gap between curvature R and eigenmode

Laplacian Ag D. Andriot et al [arXiv:1806.05156],
D. Andriot et al [arXiv:1902.10093]

— circumvent constraints on scale separation
F. Gautason et al [arXiv:1512.00457]

Can we find AdS solutions in new classes s55 and mug on a Ricci flat or nilmanifold?

— no ! Prove no-gos about it —— probably no scale-separation in our new solutions
Related to having only D, along some internal dimensions. ..

— Is Sggee only class for (classical) scale sep.?







Classification of 10d type I1A/B supergravity solutions with dS,, Mink,, AdS,
Found new solutions in previously unexplored classes (e.g. 146 With O, O, D)

Developed tools: MaxSymSolSearch.nb
MaxSymSolSpec.nb
AlgId.nb, AlgIso.nb (algebra/group identification)

De Sitter: in 4d theory with " <1 (Conjecture 4)

Minkowski: always a 4d massless scalar, among (p, 7, or)  (Massless Minkowski Conjecture)

Scale separated AdS: only on Ricci flat or nilmanifolds?

— scale separated classical AdS only in Sgges ?

Thank you for your attention!




