The landscape of 4d (anti-) de Sitter and Minkowski solutions of 10d supergravities

David Andriot

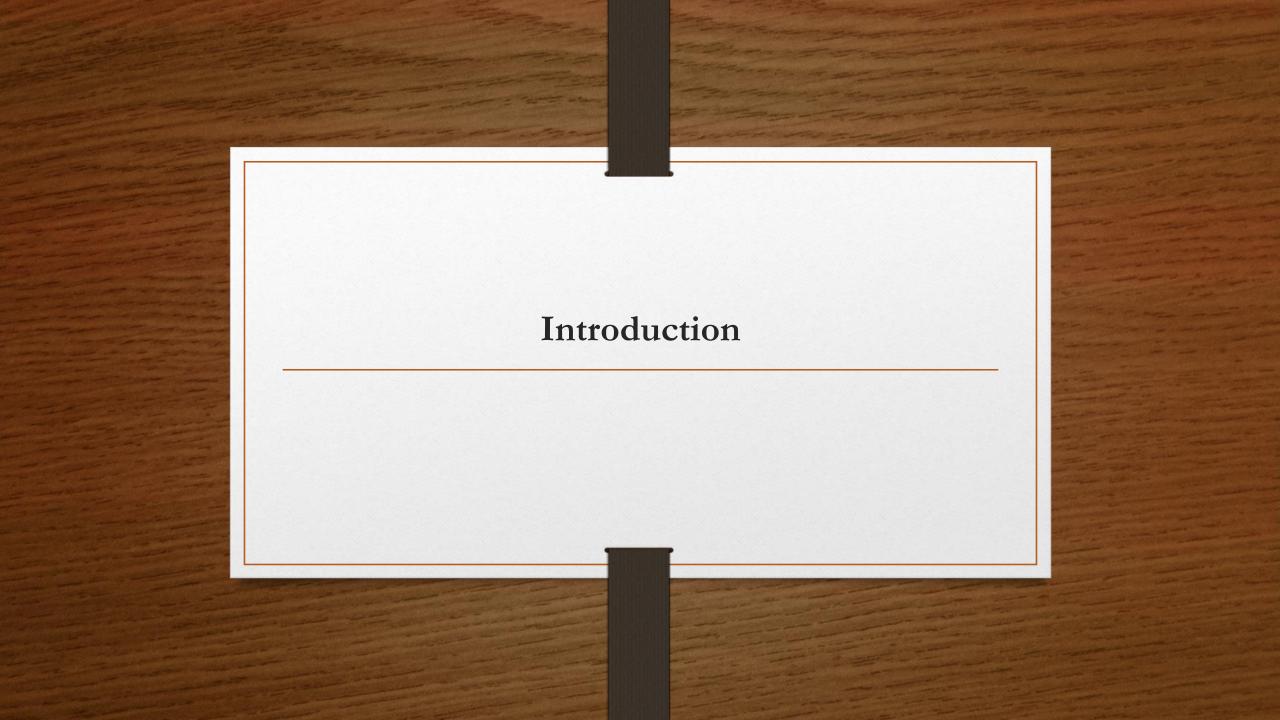
LAPTh, CNRS, Annecy, France

arXiv:2201.04152, 2204.05327 (with L. Horer, P. Marconnet)

String Phenomenology 2022

06/07/22

Liverpool, U.K.



General (common ?) properties \longleftrightarrow swampland conjectures

General (common ?) properties \longleftrightarrow swampland conjectures

- → Instability of non-supersymmetric backgrounds:
 - dS D. Andriot [arXiv:1806.10999], S. K. Garg et al [arXiv:1807.05193], H. Ooguri et al [arXiv:1810.05506], ...
 - Mink
 B. S. Acharya [arXiv:1906.06886], B. S. Acharya et al [arXiv:2010.02933]
 AdS
 H. Ooguri, C. Vafa [arXiv:1610.01533]
- → Scale separation

F. F. Gautason et al [arXiv:1810.08518], D. Lust et al [arXiv:1906.05225], ... D. Andriot et al [arXiv:2006.01848]

General (common ?) properties \longleftrightarrow swampland conjectures

- → Instability of non-supersymmetric backgrounds:
 - dS D. Andriot [arXiv:1806.10999], S. K. Garg et al [arXiv:1807.05193], H. Ooguri et al [arXiv:1810.05506], ...
 - Mink
 B. S. Acharya [arXiv:1906.06886], B. S. Acharya et al [arXiv:2010.02933]
 AdS
 H. Ooguri, C. Vafa [arXiv:1610.01533]

→ Scale separation F. F. Gautason et al [arXiv:1810.08518], D. Lust et al [arXiv:1906.05225], ... D. Andriot et al [arXiv:2006.01848]

Classification of 10d type IIA/B supergravity solutions with dS_4 , Mink₄, AdS₄ (candidates for classical string backgrounds)

- → identify general properties?
- --- new, previously unexplored classes of solutions exhibiting new physics?

(Common) ansatz for solutions:

- 6d group manifold
- constant flux components
- smeared D_p/O_p sources
- → consistent truncation to a 4d gauged supergravity
- → solutions still with a variety of properties: (non)-susy, (un)stable, (non)-scale separated (see examples)
- + always include O_p (key)
- + solutions have a possibly non-vanishing tadpole (e.g. O_3 with D_7 or D_5 not included)

(Common) ansatz for solutions:

- 6d group manifold
- constant flux components
- smeared D_p/O_p sources
- → consistent truncation to a 4d gauged supergravity
- → solutions still with a variety of properties: (non)-susy, (un)stable, (non)-scale separated (see examples)
- + always include O_p (key)
- + solutions have a possibly non-vanishing tadpole (e.g. O_3 with D_7 or D_5 not included)
- → classification
- --- look for new solutions in unexplored classes, with MaxSymSolSearch.nb (MSSS)
- \rightarrow study **properties** of solutions: existence (dS), stability (Mink), scale separation (AdS)...

Classification and (new) solutions

Classification: 3 steps:

• Pick some (space-filling) O_p wrapping some internal dimensions

Example: O₅ along 12, O₅ along 34

class s_{55} (or m_{55})

Set I	Sources	Space dimensions								
			4d		1	2	3	4	5	6
1	O_5	\otimes	\otimes	\otimes	\otimes	\otimes				
2	O_5	\otimes	\otimes	\otimes			\otimes	\otimes		

Classification: 3 steps:

• Pick some (space-filling) O_p wrapping some internal dimensions

Example: O₅ along 12, O₅ along 34

class s_{55} (or m_{55})

Set I	Sources	Space dimensions								
			4d		1	2	3	4	5	6
1	O_5	\otimes	\otimes	\otimes	\otimes	\otimes				
2	O_5	\otimes	\otimes	\otimes			\otimes	\otimes		

• Apply O_p projection: get list of compatible fields

- *Example*: $F_1: F_{1\,5}, F_{1\,6},$
 - $F_3: F_{3\ 315}, F_{3\ 316}, F_{3\ 325}, F_{3\ 326}, F_{3\ 415}, F_{3\ 416}, F_{3\ 425}, F_{3\ 426},$
 - $F_5: F_{5,34125}, F_{5,34126},$
 - $H: H_{125}, H_{126}, H_{345}, H_{346},$
 - $f^{a}{}_{bc}: \quad f^{3}{}_{15}, \ f^{3}{}_{16}, \ f^{3}{}_{25}, \ f^{3}{}_{26}, \ f^{4}{}_{15}, \ f^{4}{}_{16}, \ f^{4}{}_{25}, \ f^{4}{}_{26}, \ f^{1}{}_{53}, \ f^{1}{}_{63}, \ f^{1}{}_{54}, \ f^{1}{}_{64},$ $f^{2}{}_{53}, f^{2}{}_{63}, f^{2}{}_{54}, f^{2}{}_{64}, f^{5}{}_{13}, f^{5}{}_{23}, f^{5}{}_{14}, f^{5}{}_{24}, f^{6}{}_{13}, f^{6}{}_{23}, f^{6}{}_{14}, f^{6}{}_{24}$

Classification: 3 steps:

• Pick some (space-filling) O_p wrapping some internal dimensions

Example: O_5 along 12, O_5 along 34

class s_{55} (or m_{55})

Set I	Sources	Space dimensions								
			4d		1	2	3	4	5	6
1	O_5	\otimes	\otimes	\otimes	\otimes	\otimes				
2	O_5	\otimes	\otimes	\otimes			\otimes	\otimes		

• Apply O_p projection: get list of compatible fields

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], √	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[2 5], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	~
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

Known solutions: [..]New solutions:

No-go:

X

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], √	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	√	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[25], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	✓	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	✓		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

Known solutions:	[]
New solutions:	\checkmark
No-go:	×

C C

4 main classes: s_{6666} m_{5577}

 ${s_{55} \over m_{46}}$

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], √	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[25], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	✓	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	√		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 s_{6666}

Set I	Sources		Space dimensions							
			4d		1	2	3	4	5	6
1	$\boxed{O_6, (D_6)}$	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes			
2	$O_6, (D_6)$	\otimes	\otimes	\otimes	\otimes			\otimes	\otimes	
3	$O_6, (D_6)$	\otimes	\otimes	\otimes		\otimes			\otimes	\otimes
4	$O_6, (D_6)$	\otimes	\otimes	\otimes			\otimes	\otimes		\otimes

- dS C. Caviezel et al [arXiv:0812.3551], U. H. Danielsson et al [arXiv:1103.4858], ... + new solutions

- Mink P. G. Camara et al [hep-th/0506066], F. Marchesano et al [arXiv:1908.11386]

- AdS

P. G. Camara et al [hep-th/0506066],O. DeWolfe et al[hep-th/0505160],C. Caviezel et al [arXiv:0806.3458], ...

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], √	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[<u>25</u>], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	√		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 m_{5577}

Set I	Sources		Space dimensions							
			4d		1	2	3	4	5	6
1	$\boxed{O_5, (D_5)}$	\otimes	\otimes	\otimes	\otimes	\otimes				
2	$O_5, (D_5)$	\otimes	\otimes	\otimes			\otimes	\otimes		
3	$O_7, (D_7)$	\otimes	\otimes	\otimes		\otimes		\otimes	\otimes	\otimes
4	$O_7, (D_7)$	\otimes	\otimes	\otimes	\otimes		\otimes		\otimes	\otimes

T-dual D_p/O_p to s_{6666} (but not nec. for fields)

- dS

C. Caviezel et al [arXiv:0912.3287]

+ new solutions

- AdS

C. Caviezel et al [arXiv:0806.3458], M. Petrini et al [arXiv:1308.1265], ...

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	√	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[25], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	✓	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], ✓		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

C	
Э	55

Set I	Sources	Space dimensions								
			4d		1	2	3	4	5	6
1	$\boxed{O_5, (D_5)}$	\otimes	\otimes	\otimes	\otimes	\otimes				
2	$O_5, (D_5)$	\otimes	\otimes	\otimes			\otimes	\otimes		
3	(D_5)	\otimes	\otimes	\otimes					\otimes	\otimes

- dS D. Andriot et al [arXiv:2005.12930], D. Andriot [arXiv:2101.06251]

+ new solutions

- Mink

M. Grana et al [hep-th/0609124], D. Andriot et al [arXiv:2005.12930]

- AdS: new solutions

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24] , ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	~	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[<u>25</u>], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	√		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 m_{46}

Set I	Sources	Space dimensions							(
			4d		1	2	3	4	5	6
1	$O_4, (D_4)$	\otimes	\otimes	\otimes				\otimes		
2	$O_6, (D_6)$	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes			
3	(D_6)	\otimes	\otimes	\otimes	\otimes				\otimes	\otimes
	(D_6)	\otimes	\otimes	\otimes						

T-dual D_p/O_p to s_{55} (but not nec. for fields)

- dS: new solutions
- Mink: new solutions
- AdS: new solutions

Solution Source		Field	dS sol.	Mink. sol.	AdS sol.	
$_{\rm class}$	directions	$\operatorname{content}$				
s_3	(2.7)	(2.6)	×	[27]		
s_4	(2.10)	(2.9)		[28]		
s_5	(2.13)	(2.12)		[28]		
s_{55}	(2.15)	(2.14)	[9,24], ✓	[29]	\checkmark	
s_{555}	(2.17)	(2.16)	×	\checkmark	×	
s_6	(2.20)	(2.19)		[28]		
s_{66}	(2.22)	(2.21)	\checkmark	[29]		
s_{6666}	(2.24)	(2.23)	[<u>25</u>], √	[30]	[30 - 32]	
s_7	(2.27)	(2.26)	×	[28]		
s_{77}	(2.29)	(2.28)	×			
m_4	(2.36)	(2.9)				
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark	
m_{466}	(2.35)	(2.34)	×	\checkmark	×	
m_6	(2.30)	(2.19)				
m_{66}	(2.31)	(2.21)				
m_5	(2.37)	(2.12)				
m_{55}	(2.38)	(2.14)	√			
m_{57}	(2.40)	(2.39)				
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]	
m_7	(2.44)	(2.26)				
m_{77}	(2.45)	(2.28)				

2 peculiar classes: s_{555} and m_{466} We prove no-gos for dS and AdS

- \rightarrow only Mink. solutions!
- \longrightarrow we find examples.

De Sitter solutions and $\mathcal{N} = 1$

 s_{55} : O₅ along 12, 34, D₅ along 56

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel* D_p/O_p). D. Andriot [arXiv:1902.10093]

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel* D_p/O_p). D. Andriot [arXiv:1902.10093]

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of D_p/O_p .

+ T-duality argument: classes with 2 sets ``T-dual'' to a class with a no-go

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel D_p/O_p)*. D. Andriot [arXiv:1902.10093]

Here: **Conjecture 4**: *no de Sitter solution with 2 (intersecting) sets of D_p/O_p.* + T-duality argument: classes with 2 sets ``T-dual'' to a class with a no-go

Implication: A 4d effective theory of a classical string compactification, with a de Sitter critical point, is at most N = 1 supersymmetric.
in agreement with gauged supergravities de Sitter solutions

(see also N. Cribiori et al [arXiv:2011.06597], G. Dall'Agata et al [arXiv:2108.04254])

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel D_p/O_p)*. D. Andriot [arXiv:1902.10093]

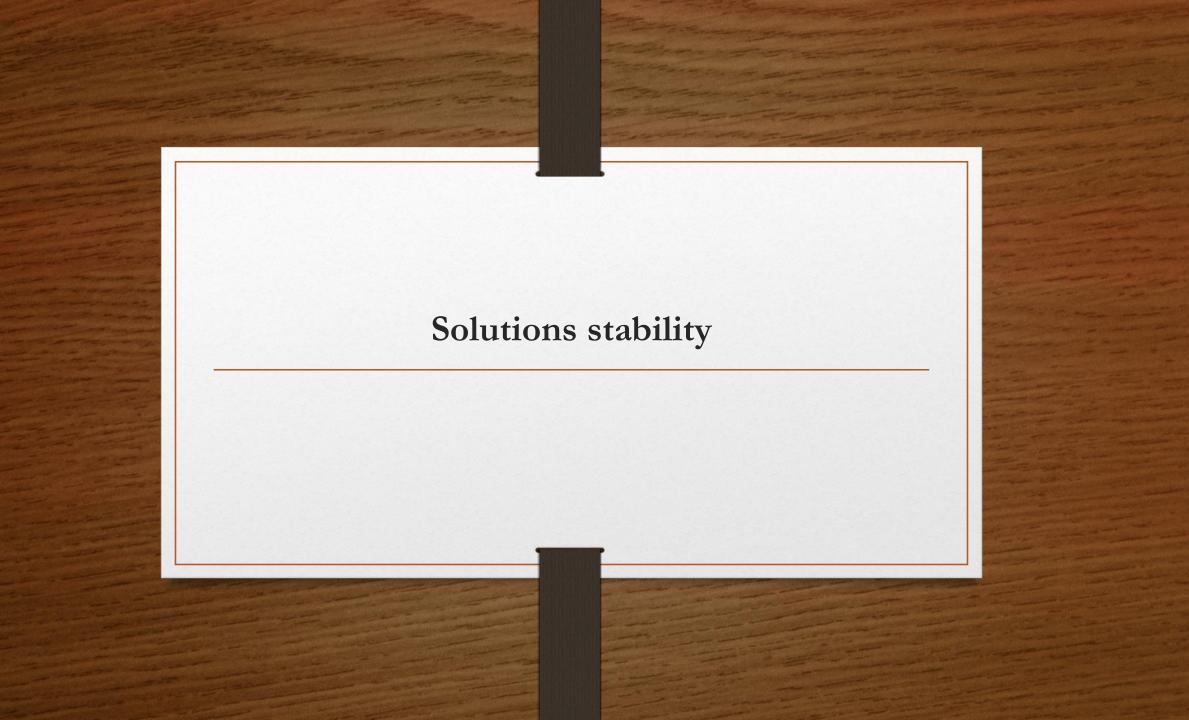
Here: **Conjecture 4**: *no de Sitter solution with 2 (intersecting) sets of D_p/O_p.* + T-duality argument: classes with 2 sets ``T-dual'' to a class with a no-go

Implication: A 4d effective theory of a classical string compactification, with a de Sitter critical point, is at most $\mathcal{N} = 1$ supersymmetric.

in agreement with gauged supergravities de Sitter solutions

(see also N. Cribiori et al [arXiv:2011.06597], G. Dall'Agata et al [arXiv:2108.04254])

Great news for phenomenology! $N \leq 1$ better for particle physics (chirality). Here a common stringy framework for (viable) cosmology and particle physics *naturally* appears.



We study the **stability** of the solutions with a 4d effective action:

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \phi^i \partial^\mu \phi^j - V \right)$$

Restricted set of fields (but enough for our purposes): (ρ, τ, σ_I)

6d volume 4d dilaton ~ volume of cycle wrapped by set I

Determination of g_{ij} , V + spectrum fully automatized in *MaxSymSolSpec.nb* (*MSSSp*) (technicalities: kinetic terms + redundancy among the σ_I)

We study the **stability** of the solutions with a 4d effective action:

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \phi^i \partial^\mu \phi^j - V \right)$$

Restricted set of fields (but enough for our purposes): (ρ, τ, σ_I)

6d volume 4d dilaton ~ volume of cycle wrapped by set I

Determination of g_{ij} , V + spectrum fully automatized in *MaxSymSolSpec.nb* (*MSSSp*) (technicalities: kinetic terms + redundancy among the σ_I)

<u>Results:</u> - Mink.: most interesting!

- dS: always tachyonic, as in proposalU. H. Danielsson et al [arXiv:1212.5178] $\eta_V \sim -1$ as in refined dS conjecture, with few (interesting) exceptionsRequires more dedicated solution searchesD. Andriot [arXiv:2101.06251]

- AdS: few (non-susy?) solutions are ``perturbatively stable'' → to be investigated H. Ooguri et al [arXiv:1610.01533] $s^{0}_{55}1$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ masses² = (3.6377, 1.5406, 0.33559, 0).

 $s^{0}_{555}1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, masses² = (0.052928, 0.0021215, 0.00005291, 0).

 $s^{0}_{555}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, masses² = (0.83127, 0.07301, 0.068032, 0).

 $m_{46}^0 1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = $(3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-6}, 0)$.

$m_{46}^0 2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, masses² = (0.52608, 0.077079, 0.021226, 0, 0).

 $m^0_{466} 1$

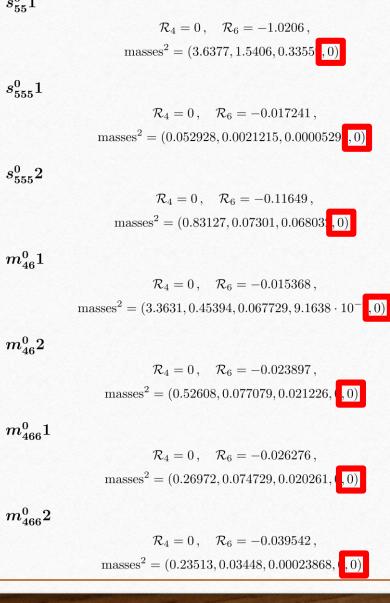
 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, masses² = (0.26972, 0.074729, 0.020261, 0, 0).

 $m^0_{466}2$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$ masses² = (0.23513, 0.03448, 0.00023868, 0, 0).

 $s^{0}_{55}1$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ $masses^2 = (3.6377, 1.5406, 0.3355, 0)$ $s^{0}_{555}1$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.017241,$ $masses^2 = (0.052928, 0.0021215, 0.0000529, 0)$ $s^{0}_{555}2$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.11649,$ $masses^2 = (0.83127, 0.07301, 0.068033, 0)$ $m_{46}^0 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, $masses^2 = (3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)$ $m_{46}^0 2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, $masses^2 = (0.52608, 0.077079, 0.021226, 0, 0)$ $m^0_{466} 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, $m^0_{466}2$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$ $masses^2 = (0.23513, 0.03448, 0.00023868, 0, 0)$

Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \rightarrow systematic massless mode in Mink solutions? $s^{0}_{55}1$



Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \rightarrow systematic massless mode in Mink solutions?

Many examples in the literature, starting with CY + no-scale potential Proof of systematic flat direction in IIA D_6/O_6 $\mathcal{N} = 1$ Mink solutions A. Micu et al [hep-th/0701173], M. Ihl et al [arXiv:0705.3410] $s_{55}^{0}1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -1.0206$, $masses^2 = (3.6377, 1.5406, 0.3355, 0)$ $s^0_{555}1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, $masses^2 = (0.052928, 0.0021215, 0.0000529, 0)$ $s^{0}_{555}2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, $masses^2 = (0.83127, 0.07301, 0.06803, 0)$ $m_{46}^0 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = $(3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)$ $m_{46}^0 2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, $masses^2 = (0.52608, 0.077079, 0.021226, 0, 0)$ $m^0_{466}1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, $masses^2 = (0.26972, 0.074729, 0.020261, 0, 0)$ $m^0_{466}2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.039542$, $masses^2 = (0.23513, 0.03448, 0.00023868, (0,0))$

Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \rightarrow systematic massless mode in Mink solutions?

Many examples in the literature, starting with CY + no-scale potential Proof of systematic flat direction in IIA D_6/O_6 $\mathcal{N} = 1$ Mink solutions A. Micu et al [hep-th/0701173], M. Ihl et al [arXiv:0705.3410]

Here: Massless Minkowski Conjecture:

10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I) $s_{55}^{0}1$

 $m^0_{466}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -1.0206$, $masses^2 = (3.6377, 1.5406, 0.3355, 0)$ $s^0_{555}1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, $masses^2 = (0.052928, 0.0021215, 0.0000529, 0)$ $s^{0}_{555}2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, $masses^2 = (0.83127, 0.07301, 0.06803, 0)$ $m_{46}^0 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = $(3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)$ $m_{46}^0 2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, $masses^2 = (0.52608, 0.077079, 0.021226, 0, 0)$ $m^0_{466}1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, $masses^2 = (0.26972, 0.074729, 0.020261, (0, 0))$

> $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$ masses² = (0.23513, 0.03448, 0.00023868, 0, 0)

Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \longrightarrow systematic massless mode in Mink solutions?

Many examples in the literature, starting with CY + no-scale potential Proof of systematic flat direction in IIA D_6/O_6 $\mathcal{N} = 1$ Mink solutions A. Micu et al [hep-th/0701173], M. Ihl et al [arXiv:0705.3410]

Here: Massless Minkowski Conjecture:

10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I)

2 important (new) points in claim:

- independent of $\,\mathcal{N}\,$ susy of theory or solution
- specification of field sector \longrightarrow useful for proof
 - \rightarrow relation to dS tachyon?

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -1.0206$, $masses^2 = (3.6377, 1.5406, 0.3355, 0)$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, $masses^2 = (0.052928, 0.0021215, 0.0000529, 0)$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$,

 $masses^2 = (0.83127, 0.07301, 0.06803, 0)$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$,

 $s_{55}^0 1$

 $s^{0}_{555}2$

 $m_{46}^0 1$

masses² = $(3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)$

 $m_{46}^0 2$

 $m^0_{466}1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, $masses^2 = (0.52608, 0.077079, 0.021226, 0, 0)$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, $masses^2 = (0.26972, 0.074729, 0.020261, 0, 0)$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.039542$, $masses^2 = (0.23513, 0.03448, 0.00023868, 0, 0)$

 $m^0_{466}2$

Massless Minkowski Conjecture:

10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I)

4d version, with potential V from 10d supergravity compactification: If there exists a Mink critical point, $M_p \nabla V = V = 0$, then the mass matrix $\nabla \partial V$ admits a vanishing eigenvalue.

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ masses² = (3.6377, 1.5406, 0.3355, 0)

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.017241,$ masses² = (0.052928, 0.0021215, 0.0000529, 0)

 $s^{0}_{555}1$

 $s_{55}^0 1$

 $s^{0}_{555}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, masses² = (0.83127, 0.07301, 0.068032, 0)

 $m_{46}^0 1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = (3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)

 $m_{46}^0 2$

 $m^0_{466}1$

 $m^0_{466}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, masses² = (0.52608, 0.077079, 0.021226, 0.0)

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.026276,$ masses² = (0.26972, 0.074729, 0.020261, 0, 0)

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$ masses² = (0.23513, 0.03448, 0.00023868, 0.0)

Massless Minkowski Conjecture:

10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I)

4d version, with potential V from 10d supergravity compactification: If there exists a Mink critical point, $M_p \nabla V = V = 0$, then the mass matrix $\nabla \partial V$ admits a vanishing eigenvalue.

Strong version:

Such a critical point admits no tachyon:

$$0 = \min \nabla \partial V = \frac{|\nabla V|}{M_p} = \frac{V}{M_p^2}$$

The inequalities of all refined de Sitter conjectures are saturated!

In a quantum gravity effective theory, any correction beyond (10d) supergravity could alter massless property... Still interesting for phenomenology!

Scale separation for AdS

Scale separation in AdS solutions: only with compact manifold being **Ricci flat** or a **nilmanifold**?

 \longrightarrow the case for solutions in s_{6666} and m_{5577}

(see also N. Cribiori et al [arXiv:2107.00019])

Scale separation in AdS solutions: only with compact manifold being **Ricci flat** or a **nilmanifold**? \longrightarrow the case for solutions in s_{6666} and m_{5577}

(see also N. Cribiori et al [arXiv:2107.00019])

Arguments in favor of this: - group manifolds, not nilmanifold, can have curvature scales > KK scale \rightarrow no scale separation with such solution D. Andriot [arXiv:1806.10999]

- Ricci flat and nilmanifolds: gap between curvature \mathcal{R}_6 and eigenmode

Laplacian Δ_6

D. Andriot et al [arXiv:1806.05156], D. Andriot et al [arXiv:1902.10093]

 \rightarrow circumvent constraints on scale separation

F. Gautason et al [arXiv:1512.00457]

Scale separation in AdS solutions: only with compact manifold being **Ricci flat** or a **nilmanifold**? \longrightarrow the case for solutions in s_{6666} and m_{5577}

(see also N. Cribiori et al [arXiv:2107.00019])

Arguments in favor of this: - group manifolds, not nilmanifold, can have curvature scales > KK scale \longrightarrow no scale separation with such solution D. Andriot [arXiv:1806.10999]

- Ricci flat and nilmanifolds: gap between curvature \mathcal{R}_6 and eigenmode

Laplacian Δ_6

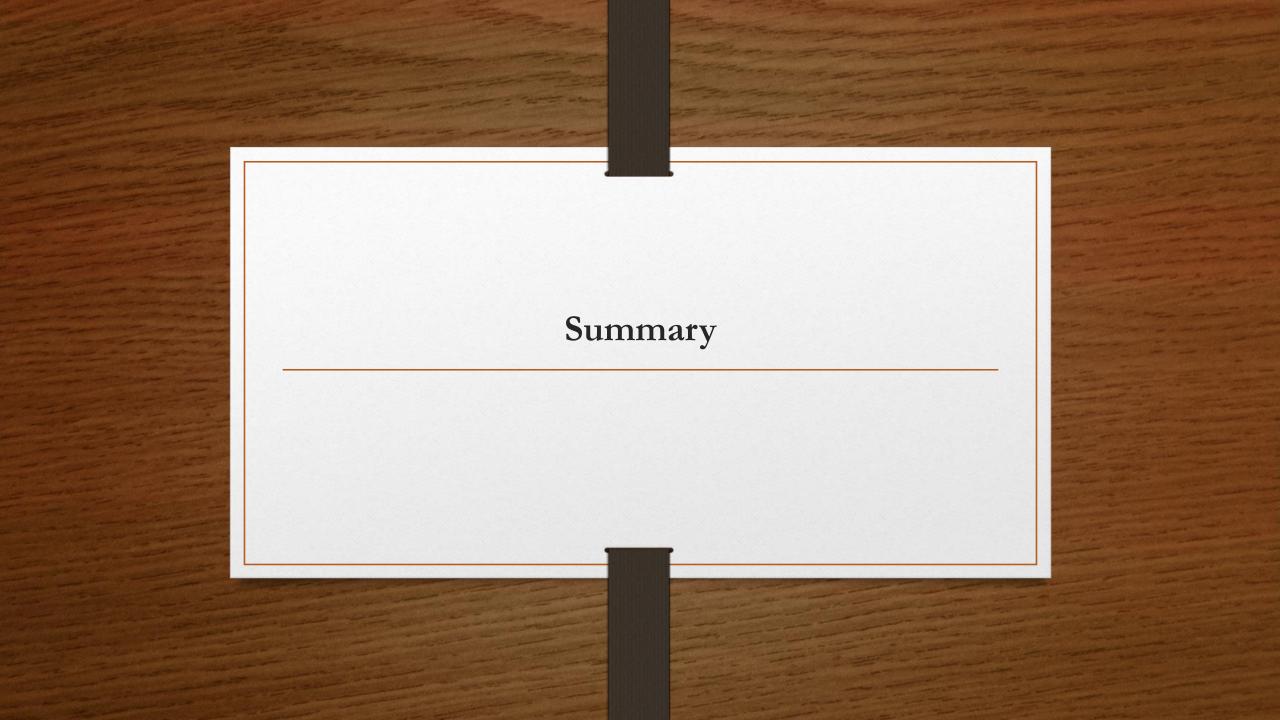
D. Andriot et al [arXiv:1806.05156], D. Andriot et al [arXiv:1902.10093]

 \rightarrow circumvent constraints on scale separation

F. Gautason et al [arXiv:1512.00457]

Can we find AdS solutions in new classes s_{55} and m_{46} on a Ricci flat or nilmanifold? \rightarrow no ! Prove no-gos about it \rightarrow probably no scale-separation in our new solutions Related to having only D_p along some internal dimensions...

 \longrightarrow Is s_{6666} only class for (classical) scale sep.?



- Classification of 10d type IIA/B supergravity solutions with dS₄, Mink₄, AdS₄
- Found **new solutions** in previously unexplored classes (e.g. m_{46} with O_4, O_6, D_6)
- Developed tools: MaxSymSolSearch.nb

MaxSymSolSpec.nb

AlgId.nb, AlgIso.nb (algebra/group identification)

• De Sitter: in 4d theory with $\mathcal{N} \leq 1$ (Conjecture 4)

•

- Minkowski: always a 4d massless scalar, among (ρ, τ, σ_I)
 - Scale separated AdS: only on Ricci flat or nilmanifolds?
 - \rightarrow scale separated classical AdS only in s_{6666} ?

Thank you for your attention!

(Massless Minkowski Conjecture)